首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  国内免费   2篇
化学   11篇
物理学   2篇
  2023年   2篇
  2022年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2009年   1篇
  2007年   1篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 62 毫秒
1.
Graphene oxide (GO) was functionalized using three different diamines, namely ethylenediamine (EDA), 4,4′-diaminodiphenyl sulfone (DDS) and p-phenylenediamine (PPD) to reinforce an epoxy adhesive, with the aim of improving the bonding strength of carbon fiber/epoxy composite. The chemical structure of the functionalized GO (FGO) nanosheets was characterized by elemental analysis, FT-IR and XRD. Hand lay-up, as a simple method, was applied for 3-ply composite fabrication. In the sample preparation, the fiber-to-resin ratio of 40:60 (w:w) and fiber orientations of 0°, 90°, and 0° were used. The GO and FGO nanoparticles were first dispersed in the epoxy resin, and then the GO and FGO reinforced epoxy (GO- or FGO-epoxy) were directly introduced into the carbon fiber layers to improve the mechanical properties. The GO and FGO contents varied in the range of 0.1–0.5 wt%. Results showed that the mechanical properties, in terms of tensile and flexural properties, were mainly dependent on the type of GO functionalization followed by the percentage of modified GO. As a result, both the tensile and flexural strengths are effectively enhanced by the FGOs addition. The tensile and flexural moduli are also increased by the FGO filling in the epoxy resin due to the excellent elastic modulus of FGO. The optimal FGO content for effectively improving the overall composite mechanical performance was found to be 0.3 wt%. Scanning electron microscopy (SEM) revealed that the failure mechanism of carbon fibers pulled out from the epoxy matrix contributed to the enhancement of the mechanical performance of the epoxy. These results show that diamine FGOs can strengthen the interfacial bonding between the carbon fibers and the epoxy adhesive.  相似文献   
2.
Electrochemical conversion of CO2 into fuels using electricity generated from renewable sources helps to create an artificial carbon cycle. However, the low efficiency and poor stability hinder the practical use of most conventional electrocatalysts. In this work, a 2D hierarchical Pd/SnO2 structure, ultrathin Pd nanosheets partially capped by SnO2 nanoparticles, is designed to enable multi‐electron transfer for selective electroreduction of CO2 into CH3OH. Such a structure design not only enhances the adsorption of CO2 on SnO2, but also weakens the binding strength of CO on Pd due to the as‐built Pd–O–Sn interfaces, which is demonstrated to be critical to improve the electrocatalytic selectivity and stability of Pd catalysts. This work provides a new strategy to improve electrochemical performance of metal‐based catalysts by creating metal oxide interfaces for selective electroreduction of CO2.  相似文献   
3.
有机-无机杂化钙钛矿型太阳能电池因其简单的制备工艺,低廉的制造成本,优异的光电转换效率,成为光伏领域的研究热点。钙钛矿光吸收材料具有消光系数高、载流子迁移率高、载流子寿命长、带隙可调控等优点。短短几年内,钙钛矿型太阳能电池的效率从最初的3.8%提高到22.1%。目前,为了获得稳定高效的钙钛矿型太阳能电池,主要有以下几个研究思路:新型器件结构设计;结构功能层的材料形貌设计;结构各功能层间的界面修饰;空穴传输材料的选择;对电极的选择。本文通过文献综述,在回顾了国内外研究者对钙钛矿型太阳能电池的研究历程的基础上,介绍了钙钛矿型太阳能电池的结构和工作原理,重点总结了电子传输层和钙钛矿层的制备工艺及优化,并讨论了钙钛矿型太阳能电池的稳定性以及展望了其商业化的前景。  相似文献   
4.
5.
The Mn-doped ZnS QDs were synthesized by a facile and one-pot method and possess intrinsic superoxide dismutase-like activity.  相似文献   
6.
7.
Metal ions are physiologically essential,but excessive metal ions may cause severe risk to plants and animals.Here,we prepared gold nanoclusters(Au NCs) protected by 11-mercaptoundecanoic acid(11-MUA),which have excellent fluorescence properties for the detection of metal ions.The results showed that the copper ions(Cu~(2+)) and iron ions(Fe~(3+)) in the solution have obvious quenching effect on the fluorescence intensity of Au NCs.The detection range of Fe~(3+) was 0.8–4.5 mmol/L(R~2= 0.992) and 4.5–11.0 mmol/L(R~2= 0.997).And Cu~(2+) has a lower linear range(0.1–1.0 mmol/L,R2= 0.993).When EDTA was added into the reaction system,it was observed that the quenching effect of Cu~(2+) and Fe~(3+)on Au NCs showed different phenomenon.Then,the effect of metal ions on the fluorescence of Au NCs was investigated.The selective detection of Cu~(2+) was achieved by EDTA masking of Fe~(3+).In addition,we realized the metal ions detection application of Au NCs in the serum  相似文献   
8.
Room temperature sodium-sulfur(RT-Na-S) batteries are regarded as promising candidates for next-generation high-energy-density batteries. However, in addition to the severe shuttle effect, the inhomogeneous deposition of the insoluble sulfur species generated during the discharge/charge processes also contributes to the rapid capacity fade of RT-Na-S batteries. In this work, the deposition behavior of the insoluble sulfur species in the traditional slurry-coated sulfur cathodes is investigated using microporous carbon spheres as model sulfur host materials. To achieve uniform deposition of insoluble sulfur species, a self-supporting sulfur cathode fabricated by assembling microporous carbon spheres is designed. With homogeneous sulfur distribution and favorable electron transport pathway, the self-supporting cathode delivers remarkably enhanced rate capability(509 mA·h/g at 2.5 C, 1 C=1675 mA/g), cycling stability(718 mA·h/g after 480 cycles at 0.5 C) and areal capacity(4.98 mA·h/cm2 at 0.1 C), highlighting the great potential of manipulating insoluble sulfur species to fabricate high-performance RT-Na-S batteries.  相似文献   
9.
Polarity in Sn-doped ZnO bicrystal nanobelts has been investigated using electron energy-loss spectroscopy. The nanobelts are composed of two domain boundaries extending along the axial direction. It is confirmed that the nanobelts are Zn terminated at both sides. Examinations of high-resolution transmission electron microscopy and electron energy-loss spectroscopy show that one domain boundary results from a stacking fault, and the other originates from Sn-ion insertion, which leads to an inverse domain boundary. A possible atomic stacking model is proposed.  相似文献   
10.
郭文明  钟敏 《无机化学学报》2017,33(7):1097-1118
有机-无机杂化钙钛矿型太阳能电池因其简单的制备工艺,低廉的制造成本,优异的光电转换效率,成为光伏领域的研究热点。钙钛矿光吸收材料具有消光系数高、载流子迁移率高、载流子寿命长、带隙可调控等优点。短短几年内,钙钛矿型太阳能电池的效率从最初的3.8%提高到22.1%。目前,为了获得稳定高效的钙钛矿型太阳能电池,主要有以下几个研究思路:新型器件结构设计;结构功能层的材料形貌设计;结构各功能层间的界面修饰;空穴传输材料的选择;对电极的选择。本文通过文献综述,在回顾了国内外研究者对钙钛矿型太阳能电池的研究历程的基础上,介绍了钙钛矿型太阳能电池的结构和工作原理,重点总结了电子传输层和钙钛矿层的制备工艺及优化,并讨论了钙钛矿型太阳能电池的稳定性以及展望了其商业化的前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号